straxen package
Subpackages
- straxen.analyses package
- Submodules
- straxen.analyses.bokeh_waveform_plot module
- straxen.analyses.daq_waveforms module
- straxen.analyses.event_display module
- straxen.analyses.holoviews_waveform_display module
- straxen.analyses.posrec_comparison module
- straxen.analyses.pulse_plots module
- straxen.analyses.quick_checks module
- straxen.analyses.records_matrix module
- straxen.analyses.waveform_plot module
- Module contents
- straxen.legacy package
- straxen.plugins package
- Subpackages
- straxen.plugins.afterpulses package
- straxen.plugins.aqmon_hits package
- straxen.plugins.detector_time_offsets package
- straxen.plugins.events package
- Submodules
- straxen.plugins.events.corrected_areas module
- straxen.plugins.events.distinct_channels module
- straxen.plugins.events.energy_estimates module
- straxen.plugins.events.event_ambience module
- straxen.plugins.events.event_area_per_channel module
- straxen.plugins.events.event_basics module
- straxen.plugins.events.event_info module
- straxen.plugins.events.event_info_double module
- straxen.plugins.events.event_pattern_fit module
- straxen.plugins.events.event_positions module
- straxen.plugins.events.event_shadow module
- straxen.plugins.events.event_w_bayes_class module
- straxen.plugins.events.events module
- straxen.plugins.events.s2_recon_pos_diff module
- straxen.plugins.events.veto_proximity module
- Module contents
- straxen.plugins.events_mv package
- straxen.plugins.events_nv package
- straxen.plugins.hitlets_mv package
- straxen.plugins.hitlets_nv package
- straxen.plugins.individual_peak_monitor package
- straxen.plugins.led_cal package
- straxen.plugins.merged_s2s package
- straxen.plugins.merged_s2s_he package
- straxen.plugins.online_monitor_mv package
- straxen.plugins.online_monitor_nv package
- straxen.plugins.online_peak_monitor package
- straxen.plugins.peaklets package
- straxen.plugins.peaklets_he package
- straxen.plugins.peaks package
- Submodules
- straxen.plugins.peaks.peak_ambience module
- straxen.plugins.peaks.peak_basics module
- straxen.plugins.peaks.peak_classification_bayes module
- straxen.plugins.peaks.peak_positions module
- straxen.plugins.peaks.peak_positions_cnn module
- straxen.plugins.peaks.peak_positions_gcn module
- straxen.plugins.peaks.peak_positions_mlp module
- straxen.plugins.peaks.peak_proximity module
- straxen.plugins.peaks.peak_shadow module
- straxen.plugins.peaks.peaks module
- Module contents
- straxen.plugins.peaks_he package
- straxen.plugins.raw_records package
- straxen.plugins.raw_records_coin_nv package
- straxen.plugins.records package
- straxen.plugins.records_he package
- straxen.plugins.records_mv package
- straxen.plugins.records_nv package
- straxen.plugins.strax_data package
- straxen.plugins.veto_intervals package
- Submodules
- straxen.plugins.defaults module
- Module contents
- Subpackages
- straxen.storage package
- Submodules
- straxen.storage.mongo_storage module
- straxen.storage.online_monitor_frontend module
- straxen.storage.rucio_local module
- straxen.storage.rucio_remote module
- straxen.storage.rundb module
- Module contents
Submodules
straxen.bokeh_utils module
- straxen.bokeh_utils.bokeh_to_wiki(fig, outputfile=None)[source]
Function which converts bokeh HTML code to a wiki readable code.
- Parameters
fig – Figure to be conerted
outputfile – String of absolute file path. If specified output is writen to the file. Else output is print to the notebook and can be simply copied into the wiki.
straxen.common module
- straxen.common.check_loading_allowed(data, run_id, target, max_in_disallowed=1, disallowed=('event_positions', 'corrected_areas', 'energy_estimates'))[source]
Check that the loading of the specified targets is not disallowed
- Parameters
data – chunk of data
run_id – run_id of the run
target – list of targets requested by the user
max_in_disallowed – the max number of targets that are in the disallowed list
disallowed – list of targets that are not allowed to be loaded simultaneously by the user
- Returns
data
- Raise
RuntimeError if more than max_in_disallowed targets are requested
- straxen.common.get_dtypes(_data)[source]
Return keys/dtype names of pd.DataFrame or numpy array
- Parameters
_data – data to get the keys/dtype names
- Returns
keys/dtype names
- straxen.common.get_livetime_sec(context, run_id, things=None)[source]
Get the livetime of a run in seconds. If it is not in the run metadata, estimate it from the data-level metadata of the data things.
- straxen.common.get_resource(x: str, fmt='text')[source]
- Get the resource from an online source to be opened here. We will
- sequentially try the following:
Load if from memory if we asked for it before;
load it from a file if the path exists;
(preferred option) Load it from our database
Load the file from some URL (e.g. raw github content)
- Parameters
x – str, either it is : A.) a path to the file; B.) the identifier of the file as it’s stored under in the database; C.) A URL to the file (e.g. raw github content).
fmt – str, format of the resource x
- Returns
the opened resource file x opened according to the specified format
- straxen.common.open_resource(file_name: str, fmt='text')[source]
Open file :param file_name: str, file to open :param fmt: format of the file :return: opened file
- straxen.common.pmt_positions(xenon1t=False)[source]
Return pandas dataframe with PMT positions columns: array (top/bottom), i (PMT number), x, y
- straxen.common.pre_apply_function(data, run_id, target, function_name='pre_apply_function')[source]
Prior to returning the data (from one chunk) see if any function(s) need to be applied.
- Parameters
data – one chunk of data for the requested target(s)
run_id – Single run-id of of the chunk of data
target – one or more targets
function_name – the name of the function to be applied. The function_name.py should be stored in the database.
- Returns
Data where the function is applied.
- straxen.common.remap_channels(data, verbose=True, safe_copy=False, _tqdm=False)[source]
- There were some errors in the channel mapping of old data as described in
https://xe1t-wiki.lngs.infn.it/doku.php?id=xenon:xenonnt:dsg:daq:sector_swap using this function, we can convert old data to reflect the right channel map while loading the data. We convert both the field ‘channel’ as well as anything that is an array of the same length of the number of channels.
- Parameters
data – numpy array of pandas dataframe
verbose – print messages while converting data
safe_copy – if True make a copy of the data prior to performing manipulations. Will prevent overwrites of the internal references but does require more memory.
_tqdm – bool (try to) add a tqdm wrapper to show the progress
- Returns
Correctly mapped data
- straxen.common.remap_old(data, targets, run_id, works_on_target='')[source]
- If the data is of before the time sectors were re-cabled, apply a software remap
otherwise just return the data is it is.
- Parameters
data – numpy array of data with at least the field time. It is assumed the data is sorted by time
targets – targets in the st.get_array to get
run_id – required positional argument of apply_function_to_data in strax
works_on_target – regex match string to match any of the targets. By default set to ‘’ such that any target in the targets would be remapped (which is what we want as channels are present in most data types). If one only wants records (no raw-records) and peaks* use e.g. works_on_target = ‘records|peaks’.
- straxen.common.rotate_perp_wires(x_obs: ndarray, y_obs: ndarray, angle_extra: Union[float, int] = 0)[source]
Returns x and y in the rotated plane where the perpendicular wires area vertically aligned (parallel to the y-axis). Accepts addition to the rotation angle with angle_extra [deg]
- Parameters
x_obs – array of x coordinates
y_obs – array of y coordinates
angle_extra – extra rotation in [deg]
- Returns
x_rotated, y_rotated
straxen.contexts module
- straxen.contexts.xenon1t_dali(output_folder='./strax_data', build_lowlevel=False, **kwargs)[source]
- straxen.contexts.xenonnt(cmt_version='global_ONLINE', xedocs_version=None, _from_cutax=False, **kwargs)[source]
XENONnT context
- straxen.contexts.xenonnt_online(output_folder: str = './strax_data', we_are_the_daq: bool = False, minimum_run_number: int = 7157, maximum_run_number: Optional[int] = None, include_rucio_remote: bool = False, include_online_monitor: bool = False, include_rucio_local: bool = False, download_heavy: bool = False, _rucio_path: str = '/dali/lgrandi/rucio/', _rucio_local_path: Optional[str] = None, _raw_path: Optional[str] = '/dali/lgrandi/xenonnt/raw', _processed_path: Optional[str] = '/dali/lgrandi/xenonnt/processed', _context_config_overwrite: Optional[dict] = None, _database_init: bool = True, _forbid_creation_of: Optional[dict] = None, **kwargs)[source]
XENONnT online processing and analysis
- Parameters
output_folder – str, Path of the strax.DataDirectory where new data can be stored
we_are_the_daq – bool, if we have admin access to upload data
minimum_run_number – int, lowest number to consider
maximum_run_number – Highest number to consider. When None (the default) consider all runs that are higher than the minimum_run_number.
include_rucio_remote – add the rucio remote frontend to the context
include_online_monitor – add the online monitor storage frontend.
include_rucio_local – add the rucio local storage frontend. This is only needed if one wants to do a fuzzy search in the data the runs database is out of sync with rucio
download_heavy – bool, whether or not to allow downloads of heavy data (raw_records*, less the aqmon)
_rucio_path – str, path of rucio
_rucio_local_path – str, path of local RSE of rucio. Only use for testing!
_raw_path – str, common path of the raw-data
_processed_path – str. common path of output data
_context_config_overwrite – dict, overwrite config
_database_init – bool, start the database (for testing)
_forbid_creation_of – str/tuple, of datatypes to prevent form being written (raw_records* is always forbidden).
kwargs – dict, context options
- Returns
strax.Context
- straxen.contexts.xenonnt_simulation(output_folder='./strax_data', wfsim_registry='RawRecordsFromFaxNT', cmt_run_id_sim=None, cmt_run_id_proc=None, cmt_version='global_ONLINE', fax_config='fax_config_nt_design.json', overwrite_from_fax_file_sim=False, overwrite_from_fax_file_proc=False, cmt_option_overwrite_sim=immutabledict({}), cmt_option_overwrite_proc=immutabledict({}), _forbid_creation_of=None, _config_overlap=immutabledict({'drift_time_gate': 'electron_drift_time_gate', 'drift_velocity_liquid': 'electron_drift_velocity', 'electron_lifetime_liquid': 'elife'}), **kwargs)[source]
The most generic context that allows for setting full divergent settings for simulation purposes
It makes full divergent setup, allowing to set detector simulation part (i.e. for wfsim up to truth and raw_records). Parameters _sim refer to detector simulation parameters.
Arguments having _proc in their name refer to detector parameters that are used for processing of simulations as done to the real detector data. This means starting from already existing raw_records and finishing with higher level data, such as peaks, events etc.
If only one cmt_run_id is given, the second one will be set automatically, resulting in CMT match between simulation and processing. However, detector parameters can be still overwritten from fax file or manually using cmt config overwrite options.
CMT options can also be overwritten via fax config file. :param output_folder: Output folder for strax data. :param wfsim_registry: Name of WFSim plugin used to generate data. :param cmt_run_id_sim: Run id for detector parameters from CMT to be used
for creation of raw_records.
- Parameters
cmt_run_id_proc – Run id for detector parameters from CMT to be used for processing from raw_records to higher level data.
cmt_version – Global version for corrections to be loaded.
fax_config – Fax config file to use.
overwrite_from_fax_file_sim – If true sets detector simulation parameters for truth/raw_records from from fax_config file istead of CMT
overwrite_from_fax_file_proc – If true sets detector processing parameters after raw_records(peaklets/events/etc) from from fax_config file instead of CMT
cmt_option_overwrite_sim – Dictionary to overwrite CMT settings for the detector simulation part.
cmt_option_overwrite_proc – Dictionary to overwrite CMT settings for the data processing part.
_forbid_creation_of – str/tuple, of datatypes to prevent form being written (e.g. ‘raw_records’ for read only simulation context).
_config_overlap – Dictionary of options to overwrite. Keys must be simulation config keys, values must be valid CMT option keys.
kwargs – Additional kwargs taken by strax.Context.
- Returns
strax.Context instance
straxen.corrections_services module
Return corrections from corrections DB
- class straxen.corrections_services.CorrectionsManagementServices(username=None, password=None, mongo_url=None, is_nt=True)[source]
Bases:
object
A class that returns corrections Corrections are set of parameters to be applied in the analysis stage to remove detector effects. Information on the strax implementation can be found at https://github.com/AxFoundation/strax/blob/master/strax/corrections.py
- get_config_from_cmt(run_id, model_type, version='ONLINE')[source]
Smart logic to return NN weights file name to be downloader by straxen.MongoDownloader() :param run_id: run id from runDB :param model_type: model type and neural network type; model_mlp, or model_gcn or model_cnn :param version: version :param return: NN weights file name
- get_corrections_config(run_id, config_model=None)[source]
Get context configuration for a given correction :param run_id: run id from runDB :param config_model: configuration model (tuple type) :return: correction value(s)
- get_local_versions(global_version)[source]
Returns a dict of local versions for a given global version. Use ‘latest’ to get newest version
- get_pmt_gains(run_id, model_type, version, cacheable_versions=('ONLINE', ), gain_dtype=<class 'numpy.float32'>)[source]
Smart logic to return pmt gains to PE values. :param run_id: run id from runDB :param model_type: to_pe_model (gain model) :param version: version :param cacheable_versions: versions that are allowed to be cached in ./resource_cache :param gain_dtype: dtype of the gains to be returned as array :return: array of pmt gains to PE values
- get_start_time(run_id)[source]
Smart logic to return start time from runsDB :param run_id: run id from runDB :return: run start time
- property global_versions
straxen.get_corrections module
- straxen.get_corrections.get_cmt_resource(run_id, conf, fmt='')[source]
Get resource with CMT correction file name
- straxen.get_corrections.get_correction_from_cmt(run_id, conf)[source]
Get correction from CMT general format is conf = (‘correction_name’, ‘version’, True) where True means looking at nT runs, e.g. get_correction_from_cmt(run_id, conf[:2]) special cases: version can be replaced by constant int, float or array when user specify value(s) :param run_id: run id from runDB :param conf: configuration :return: correction value(s)
straxen.holoviews_utils module
- class straxen.holoviews_utils.nVETOEventDisplay(events=None, hitlets=None, run_id=0, channel_range=(2000, 2119), pmt_map='nveto_pmt_position.csv', plot_extension='bokeh')[source]
Bases:
object
- static hitlets_to_hv_points(hitlets, t_ref=None)[source]
Function which converts hitlets into hv.Points used in the different plots. Computes hitlet times as relative times with respect to the first hitlet if t_ref is not set.
- plot_event_display()[source]
Creates an interactive event display for the neutron veto.
- Returns
panel.Column hosting the plots and panels.
- plot_hitlet_matrix(hitlets, _hitlet_points=None)[source]
Function which plots the hitlet matrix for the specified hitlets. The hitlet matrix is something equivalent to the record matrix for the TPC.
- Parameters
hitlets – Hitlets to be plotted if called directly.
_hitlet_points – holoviews.Points created by the event display. Only internal use.
- Returns
hv.Polygons plot.
- plot_nveto(hitlets, pmt_size=8, pmt_distance=0.5, _hitlet_points=None)[source]
Plots the nveto pmt pattern map for the specified hitlets. Expects hitlets to be sorted in time.
- Parameters
hitlets – Hitlets to be plotted if called directly.
pmt_size – Base size of a PMT for 1 pe.
pmt_distance – Scaling parameter for the z -> xy projection.
_hitlet_points – holoviews.Points created by the event display. Only internal use.
- Returns
stacked hv.Points plot.
straxen.itp_map module
- class straxen.itp_map.InterpolateAndExtrapolate(points, values, neighbours_to_use=None, array_valued=False)[source]
Bases:
object
Linearly interpolate- and extrapolate using inverse-distance weighted averaging between nearby points.
- class straxen.itp_map.InterpolatingMap(data, method='WeightedNearestNeighbors', **kwargs)[source]
Bases:
object
Correction map that computes values using inverse-weighted distance interpolation.
- The map must be specified as a json translating to a dictionary like this:
‘coordinate_system’ : [[x1, y1], [x2, y2], [x3, y3], [x4, y4], …], ‘map’ : [value1, value2, value3, value4, …] ‘another_map’ : idem ‘name’: ‘Nice file with maps’, ‘description’: ‘Say what the maps are, who you are, etc’, ‘timestamp’: unix epoch seconds timestamp
with the straightforward generalization to 1d and 3d.
- Alternatively, a grid coordinate system can be specified as follows:
‘coordinate_system’ : [[‘x’, [x_min, x_max, n_x]], [[‘y’, [y_min, y_max, n_y]]
Alternatively, an N-vector-valued map can be specified by an array with last dimension N in ‘map’.
The default map name is ‘map’, I’d recommend you use that.
- For a 0d placeholder map, use
‘points’: [], ‘map’: 42, etc
Default method return inverse-distance weighted average of nearby 2 * dim points Extra support includes RectBivariateSpline, RegularGridInterpolator in scipy by pass keyword argument like
method=’RectBivariateSpline’
- The interpolators are called with
‘positions’ : [[x1, y1], [x2, y2], [x3, y3], [x4, y4], …] ‘map_name’ : key to switch to map interpolator other than the default ‘map’
- metadata_field_names = ['timestamp', 'description', 'coordinate_system', 'name', 'irregular', 'compressed', 'quantized']
straxen.matplotlib_utils module
- straxen.matplotlib_utils.draw_box(x, y, **kwargs)[source]
Draw rectangle, given x-y boundary tuples
- straxen.matplotlib_utils.log_x(a=None, b=None, scalar_ticks=True, tick_at=None)[source]
Make the x axis use a log scale from a to b
- straxen.matplotlib_utils.log_y(a=None, b=None, scalar_ticks=True, tick_at=None)[source]
Make the y axis use a log scale from a to b
- straxen.matplotlib_utils.plot_on_single_pmt_array(c, array_name='top', xenon1t=False, r=68.39200000000001, pmt_label_size=8, pmt_label_color='white', show_tpc=True, log_scale=False, vmin=None, vmax=None, dead_pmts=None, dead_pmt_color='gray', **kwargs)[source]
Plot one of the PMT arrays and color it by c. :param c: Array of colors to use. Must be len() of the number of TPC PMTs :param label: Label for the color bar :param pmt_label_size: Fontsize for the PMT number labels. Set to 0 to disable. :param pmt_label_color: Text color of the PMT number labels. :param log_scale: If True, use a logarithmic color scale :param extend: same as plt.colorbar(extend=…) :param vmin: Minimum of color scale :param vmax: maximum of color scale Other arguments are passed to plt.scatter.
- straxen.matplotlib_utils.plot_pmts(c, label='', figsize=None, xenon1t=False, show_tpc=True, extend='neither', vmin=None, vmax=None, **kwargs)[source]
Plot the PMT arrays side-by-side, coloring the PMTS with c. :param c: Array of colors to use. Must have len() n_tpc_pmts :param label: Label for the color bar :param figsize: Figure size to use. :param extend: same as plt.colorbar(extend=…) :param vmin: Minimum of color scale :param vmax: maximum of color scale :param show_axis_labels: if True it will show x and y labels Other arguments are passed to plot_on_single_pmt_array.
straxen.mini_analysis module
straxen.misc module
- class straxen.misc.CacheDict(*args, cache_len: int = 10, **kwargs)[source]
Bases:
OrderedDict
Dict with a limited length, ejecting LRUs as needed. copied from https://gist.github.com/davesteele/44793cd0348f59f8fadd49d7799bd306
- class straxen.misc.TimeWidgets[source]
Bases:
object
- straxen.misc.convert_array_to_df(array: ndarray) DataFrame [source]
Converts the specified array into a DataFrame drops all higher dimensional fields during the process.
- Parameters
array – numpy.array to be converted.
- Returns
DataFrame with higher dimensions dropped.
- straxen.misc.dataframe_to_wiki(df, float_digits=5, title='Awesome table', force_int=())[source]
Convert a pandas dataframe to a dokuwiki table (which you can copy-paste onto the XENON wiki) :param df: dataframe to convert :param float_digits: Round float-ing point values to this number of digits. :param title: title of the table.
- straxen.misc.filter_kwargs(func, kwargs)[source]
Filter out keyword arguments that are not in the call signature of func and return filtered kwargs dictionary
- straxen.misc.print_versions(modules=('strax', 'straxen', 'cutax'), print_output=True, include_python=True, return_string=False, include_git=True)[source]
Print versions of modules installed.
- Parameters
modules – Modules to print, should be str, tuple or list. E.g. print_versions(modules=(‘numpy’, ‘dddm’,))
return_string – optional. Instead of printing the message, return a string
include_git – Include the current branch and latest commit hash
- Returns
optional, the message that would have been printed
- straxen.misc.total_size(o, handlers=None, verbose=False)[source]
Returns the approximate memory footprint an object and all of its contents.
Automatically finds the contents of the following builtin containers and their subclasses: tuple, list, deque, dict, set and frozenset. To search other containers, add handlers to iterate over their contents:
- handlers = {SomeContainerClass: iter,
OtherContainerClass: OtherContainerClass.get_elements}
- straxen.misc.utilix_is_configured(header: str = 'RunDB', section: str = 'xent_database', warning_message: Union[None, bool, str] = None) bool [source]
Check if we have the right connection to :return: bool, can we connect to the Mongo database?
- Parameters
header – Which header to check in the utilix config file
section – Which entry in the header to check to exist
warning_message – If utilix is not configured, warn the user. if None -> generic warning if str -> use the string to warn if False -> don’t warn
straxen.numbafied_scipy module
straxen.scada module
- class straxen.scada.SCADAInterface(context=None, use_progress_bar=True)[source]
Bases:
object
- find_pmt_names(pmts=None, hv=True, current=False)[source]
Function which returns a list of PMT parameter names to be called in SCADAInterface.get_scada_values. The names refer to the high voltage of the PMTs, not their current.
Thanks to Hagar and Giovanni who provided the file.
- Parameters
pmts – Optional parameter to specify which PMT parameters should be returned. Can be either a list or array of channels or just a single one.
hv – Bool if true names of high voltage channels are returned.
current – Bool if true names for the current channels are returned.
- Returns
dictionary containing short names as keys and scada parameter names as values.
- get_scada_values(parameters, start=None, end=None, run_id=None, query_type_lab=True, time_selection_kwargs=None, fill_gaps=None, filling_kwargs=None, down_sampling=False, every_nth_value=1)[source]
Function which returns XENONnT slow control values for a given set of parameters and time range.
The time range can be either defined by a start and end time or via the run_id, target and context.
- Parameters
parameters – dictionary containing the names of the requested scada-parameters. The keys are used as identifier of the parameters in the returned pandas.DataFrame.
start – int representing the start time of the interval in ns unix time.
end – same as start but as end.
run_id – Id of the run. Can also be specified as a list or tuple of run ids. In this case we will return the time range lasting between the start of the first and endtime of the second run.
query_type_lab – Mode on how to query data from the historians. Can be either False to get raw data or True (default) to get data which was interpolated by historian. Useful if large time ranges have to be queried.
time_selection_kwargs – Keyword arguments taken by st.to_absolute_time_range(). Default: {“full_range”: True}
fill_gaps – Decides how to fill gaps in which no data was recorded. Only needed for query_type_lab=False. Can be either None, “interpolation” or “forwardfill”.None keeps the gaps (default), “interpolation” uses pandas.interpolate and “forwardfill” pandas.ffill. See https://pandas.pydata.org/docs/ for more information. You can change the filling options of the methods with the filling_kwargs.
filling_kwargs – Kwargs applied to pandas .ffill() or .interpolate(). Only needed for query_type_lab=False.
down_sampling – Boolean which indicates whether to donw_sample result or to apply average. The averaging is deactivated in case of interpolated data. Only needed for query_type_lab=False.
every_nth_value – Defines over how many values we compute the average or the nth sample in case we down sample the data. In case query_type_lab=True every nth second is returned.
- Returns
pandas.DataFrame containing the data of the specified parameters.
- straxen.scada.convert_time_zone(df, tz)[source]
Function which converts the current time zone of a given pd.DataFrame into another timezone.
- Parameters
df – pandas.DataFrame containing the Data. Index must be a datetime object with time zone information.
tz – str representing the timezone the index should be converted to. See the notes for more information.
- Returns
pandas.DataFrame with converted time index.
- Notes:
1. ) The input pandas.DataFrame must be indexed via datetime objects which are timezone aware.
2.) You can find a complete list of available timezones via:
` import pytz pytz.all_timezones `
You can also specify ‘strax’ as timezone which will convert the time index into a ‘strax time’ equivalent. The default timezone of strax is UTC.
straxen.test_utils module
straxen.units module
Define unit system for pax (i.e., seconds, etc.)
This sets up variables for the various unit abbreviations, ensuring we always have a ‘consistent’ unit system. There are almost no cases that you should change this without talking with a maintainer.
straxen.url_config module
- class straxen.url_config.URLConfig(cache=0, **kwargs)[source]
Bases:
Config
Dispatch on URL protocol. unrecognized protocol returns identity inspired by dasks Dispatch and fsspec fs protocols.
- NAMESPACE_SEP = '.'
- PLUGIN_ATTR_PREFIX = 'plugin.'
- QUERY_SEP = '?'
- SCHEME_SEP = '://'
- classmethod are_equal(first, second)[source]
Return whether two URLs are equivalent (have equal ASTs)
- classmethod ast_to_url(protocol: Union[str, tuple], arg: Optional[Union[str, tuple]] = None, kwargs: Optional[dict] = None)[source]
Convert a protocol abstract syntax tree to a valid URL
- property cache
- classmethod deref_ast(protocol, arg, kwargs, **namespace)[source]
Dereference an AST by looking up values in namespace
- classmethod eval(protocol: str, arg: Optional[Union[str, tuple]] = None, kwargs: Optional[dict] = None)[source]
- Evaluate a URL/AST by recusively dispatching protocols by name
with argument arg and keyword arguments kwargs
and return the value. If protocol does not exist, returnes arg
- Parameters
protocol – name of the protocol or a URL
arg – argument to pass to protocol, can be another (sub-protocol, arg, kwargs) tuple, in which case sub-protocol will be evaluated and passed to protocol
kwargs – keyword arguments to be passed to the protocol
- Returns
(Any) The return value of the protocol on these arguments
- classmethod evaluate_dry(url: str, **kwargs)[source]
Utility function to quickly test and evaluate URL configs, without the initialization of plugins (so no plugin attributes). plugin attributes can be passed as keyword arguments.
example:
from straxen import URLConfig url_string='cmt://electron_drift_velocity?run_id=027000&version=v3' URLConfig.evaluate_dry(url_string) # or similarly url_string='cmt://electron_drift_velocity?run_id=plugin.run_id&version=v3' URLConfig.evaluate_dry(url_string, run_id='027000')
Please note that this has to be done outside of the plugin, so any attributes of the plugin are not yet note to this dry evaluation of the url-string.
- Parameters
url – URL to evaluate, see above for example.
- Keyword
any additional kwargs are passed to self.dispatch (see example)
- Returns
evaluated value of the URL.
- fetch(plugin)[source]
override the Config.fetch method this is called when the attribute is accessed from withing the Plugin instance
- classmethod format_url_kwargs(url, **kwargs)[source]
Add keyword arguments to a URL. Sorts all arguments by key for hash consistency
- classmethod lookup_value(value, **namespace)[source]
Optionally fetch an attribute from namespace if value is a string with cls.NAMESPACE_SEP in it, the string is split and the first part is used to lookup an object in namespace and the second part is used to lookup the value in the object. If the value is not a string or the target object is not in the namesapce, the value is returned as is.
- classmethod preprocessor(func=None, precedence=0)[source]
Register a new processor to modify the config values before they are used.
- classmethod register(protocol, func=None)[source]
Register dispatch of func on urls starting with protocol name protocol
- validate(config, run_id=None, run_defaults=None, set_defaults=True)[source]
This method is called by the context on plugin initialization at this stage, the run_id and context config are already known but the config values are not yet set on the plugin. Therefore its the perfect place to run any preprocessors on the config values to make any needed changes before the configs are hashed.